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1 Introduction 
The derivation of the physical properties of macroscopic systems from the 
intermolecular potentials is a major but largely unattained objective of molecular 
theory. For dilute gases and certain crystalline solids the problem is greatly 
simplified by the fact that these systems may be satisfactorily represented by 
models consisting of entities, particles, or oscillators, which are independent of 
each other. No such simplification is possible in the case of compressed gases, 
liquids, and solutions and the mathematical difficulties of the many-body 
problem are obstacles to progress. It is possible to by-pass these difficulties to 
some extent by making use of powerful computer simulation techniques which 
have been developed in recent years. Such methods have proved particularly 
valuable for the study of simple liquids, i.e., liquids composed of molecules 
obeying the laws of classical mechanics and interacting through potentials which 
are spherically symmetric and pair-wise additive. The substances which most 
closely resemble this ideal are the heavier rare gases (A, Kr, Xe) and liquids 
composed either of certain diatomic molecules (e.g., N2, 02, CO) or of poly- 
atomic molecules which are approximately spherical (e.g., CH,). These systems 
display the characteristic features of the liquid state without the problems 
arising from more complicated modes of interaction. Argon is the example 
most frequently quoted because a wealth of accurate experimental data is 
available. 

This Review is concerned with the application to the study of simple liquids 
of the techniques of computer simulation known as the Monte Carlo method 
and the method of molecular dynamics. In each case the properties studied are 
those of a model system representing a fluid at fixed temperature and density 
and containing, typically, tens or hundreds of particles. In the Monte Carlo 
method, devised originally by Metropolis et all  and later developed by Wood 
and his ~011aborator~,~-* a set of molecular configurations is generated in the 

Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller, J.  Chem. Phys., 1953, 21, 1087. 
W. W. Wood and F. R. Parker, J .  Chem. Phys., 1957,27,720. 
W. W. Wood, F. R. Parker, and J. D. Jacobson, Nuovo Cimento, suppl. X ,  1958,9, 133. 
W. W. Wood, ‘Physics of Simple Liquids’, ed. H. N. V. Temperley, J. S. Rowlinson, and 

G. S. Rushbrooke, North-Holland Publishing Co.. Amsterdam 1968. 
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computer by random displacements of the particles of the model; the configura- 
tions are accepted or rejected according to a criterion which ensures that a given 
configuration occurs with a probability proportional to the Boltzmann factor, 
exp (- p@), for that configuration. (@ is the total potential energy of the 
configuration and f i  = l / k ~ T . )  The equilibrium value of a physical property X 
may then be found by taking an average value {X) over the whole set of 
configurations. In the method of molecular dynamics developed by Alder and 
Wainwright6* the equations of motion of the particles of the model are solved 
by step-wise numerical integration. The equilibrium properties of the system 
are calculated from averages taken over a sufficiently long time interval. Time- 
dependent phenomena may also be studied. The Monte Carlo and molecular 
dynamics methods therefore provide, respectively, solutions of the many-body 
problem in classical statistical mechanics and classical kinetic theory. Their 
success is due to the fact that, at least for homogeneous phases, the average 
properties per particle of a relatively small model are generally very close to 
those of the macroscopic system which the model is chosen to represent. 

A complete Monte Carlo or molecular dynamics calculation may be regarded 
as a computer ‘experiment’ which yields accurate information on the consequences 
of a given intermolecular force law. The results of such an ‘experiment’ can be 
used to test the adequacy of pair potentials proposed for some real system or, 
conversely, to determine the ‘best’ pair potential for a real system by comparing 
measured and computed thermodynamic and transport properties. Statistical 
mechanical theories may be tested unambiguously by comparing results derived 
by means of a theory from a given pair potential with those obtained for the 
same potential in a Monte Carlo or molecular dynamics calculation. It is also 
possible to obtain data which are experimentally inaccessible or nearly 
inaccessible. For example the motion of molecules in a simple liquid can be 
studied in great detail in a molecular dynamics ‘experiment’; equilibrium and 
time-dependen t pair distribution functions can be calculated without the 
considerable errors involved in determining these functions by means of X-ray 
and neutron diffraction experiments; and for systems of two components, A 
and B say, the total potential energy and the total radial distribution function 
can be resolved into contributions from A-A, B-B, and A-B pairs. 

At the time of the last review of this subject in these pages’ the Monte Carlo 
and molecular dynamics methods had been applied to the study of systems of 
hard elastic spheres, and a promising beginning had been made with Monte 
Carlo calculations for a Lennard-Jones 12-6 potential. This early work has 
also been reviewed elsewhere.** * Assemblies of hard spheres and other highly 
idealised systems are of theoretical interest and have continued to receive 
attention. This review, however, will be mainly concerned with ‘realistic’ pair 

B. J. Alder and T. W. Wainwright, J.  Chem. Phys., 1959,31,459. 

M .  A. D. Fluendy and E. B. Smith, Quart Rev., 1962,16, 241. 
I. 2. Fisher, Soviet Phys. Uspekhi, 1960,2, 783. 

13 B. J. Alder and T. W. Wainwright, ‘The Many-Body Problem’, ed. J. K. Percus, Interscience, 
New York, 1963. 
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potentials such as the 12-6 and exp-6 functions. (These potentials are 
described in section 3.) Thermodynamic properties, including phase equilibria 
and the properties of mixtures, structural properties, and time-dependent 
phenomena are discussed in separate sections. 

2 Computational Details 
The same basic computer model is used both in Monte Carlo calculations and 
in molecular dynamics. A system of N particles is confined within a cell, usually 
a cube, of volume V, and the co-ordinates which define the position of each 
particle within the cell are stored in the computer. The number of particles in 
the cell is generally less than a thousand, and in order to simulate as closely as 
possible the behaviour of a macroscopic system a periodic boundary condition 
is used: the fundamental cell is surrounded by replicas of itself; each replica 
contains N particles which occupy the same relative positions as those in the 
fundamental cell. It is also advantageous to choose Nand the shape of the cell 
in such a way that the periodic boundary condition generates a perfect lattice 
appropriate to the system under study when the particles in the fundamental 
cell are arranged in a suitably ordered manner. Argon, for example, crystallises 
in a face-centred cubic lattice and for this system it is therefore convenient to 
use a cubic cell and choose N = 4n3, where n = 1, 2, 3, 4, 5,  6 . . . i.e., 
N = 4,  32, 108, 256, 500, 864. . . . The particles are assumed to interact through 
a pair potential 4 ( r ) ;  the corresponding pair virial function # ( Y ) ,  for potentials 
without discontinuities, is given by 

The total potential energy @ and total virial of the model are calculated as 
the sums of pair terms. Interactions between the particles in the fundamental 
cell and particles in adjacent cells are included in the sums. The contributions 
from particles separated by a distance greater than some chosen cut-off value 
are not calculated explicitly but, usually, by integration over a uniform particle 
density. 

In the Monte Carlo method a particle of the system is chosen, either serially 
or at random, and given a random displacement. Let the increase in total 
potential energy of the system be A@. If A@ is negative the move is accepted 
and the new configuration replaces the old one. If d@ is positive the move is 
accepted only with the probability exp (- FA@). 

Repetition of this procedure generates a chain of configurations which are 
distributed in phase space with a probability density proportional to the 
Boltzmann factor exp (- /I@). (If a move is rejected the previous configuration 
is counted again.) The overall chain average of any function of the particle 
co-ordinates (e.g., @, ‘I?) therefore converges to the canonical ensemble average 
of the same quantity as the chain length increases. The molar configurational 
internal energy U ( V ,  T) ,  where V is the molar volume, is proportional to the 
average potential energy <@) of the computer model and the pressure P (V,  T )  
is calculated from the average virial {Y} by means of the virial theorem. Thus 
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P V  = NokBT - (No/3N)(Y) (3) 

where No is the Avogadro number. The radial distribution function and other 
equilibrium properties may also be determined. 

In the method of molecular dynamics the particles are given initial velocities 
and the subsequent motion of the system is studied by numerical integration of 
Newton's equations. Equilibrium properties are calculated as time-averages and 
information is also obtained on time-dependent phenomena and transport 
coefficients. The total energy of the system remains constant apart from small 
fluctuations caused by the use of a finite time interval in the numerical 
integrations. The temperature associated with a particular 'experiment' is 
calculated from the mean kinetic energy. The particle velocities may be changed 
in the early stages of a calculation if it is found that the temperature has drifted 
far from the region of interest. As it is desirable to minimise the fluctuations 
in temperature the model of a macroscopic system used in a molecular dynamics 
calculation generally contains a larger number of particles than that used in a 
Monte Carlo study of the same system. Apart from the choice of initial 
co-ordinates and velocities the molecular dynamics calculation contains no 
probabilistic elements. 

The great advantage of the method of molecular dynamics is that it allows 
the study of transport processes. This is not possible with the Monte Carlo 
method but the latter possesses features which are of value in certain applications. 
For example the method can be extended to the calculation of average values 
in other types of statistical mechanical ensemble. The procedure outlined above 
is one appropriate to the usual Gibbs canonical or NVT-ensemble but 
calculations in the isothermal-isobaric or NPT-ensemble have also been 
r e p ~ r t e d . ~ ~  a-11 The fact that the temperature is a fixed parameter in a Monte 
Carlo calculation makes this method particularly suitable for the study of iso- 
thermal processes. The efficiencies of the two methods, measured by the total 
computing time required to give averages of equal statistical reliability, 'are 
much the same. A typical Monte Carlo calculation for a system such as liquid 
argon requires the generation of ca. 300,000 configurations of a model 
containing 108 particles. An equivalent calculation by molecular dynamics 
would require the integration of the equations of motion of 864 particles for 
ca. 1500 time intervals of ca. 10-14 sec. In either case the cut-off distance in the 
energy summations would be ca. 9 A. The machine requirements are severe. 
The data given in Table 1 provide some indication of the attainable speeds on 
a number of computers. These figures can be regarded as only a rough guide 
because they take no account of different programming practices. 

W. W. Wood, J. Chem. Phys., 1968,48,415. 
lo I. R. McDonald, Chem. Phys. Letters, 1969, 3, 241. 
l1 I. R. McDonald, 'Proceedings of Culham Conference on Computational Physics', UKAEA 
Culham Laboratory and IPPS, 1969, Vol. 2, July, paper 38. 
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Table 1 Machine time used on various computers in simulation studies of the 
12-6 potential at liquid densities 

Column (i) : number of time steps per hour in molecular dynamics calculation. 
Column (ii) : number of Monte Carlo configurations generated per hour. 

Computer N (0 (ii) 
IBM 7M2 32 19,Ooo 
IBM 7042 108 6500 
IBM 7M60 250 90 
CDC 36oO6O 864 75 
CDC 660013 864 1500 
UNIVAC 1 10713 864 150 
UNIVAC 1108a 864 400,000 
ICT ATLAS’ 108 260,000 
ICT ATLASb 256 180,Ooo 

a personal communication from Dr. Levesque; b unpublished work. 

3 Thermodynamic Properties and Intermolecular Forces 

A. One-component Systems.-Computer ‘experiments’ on systems of hard 
spheres have confirmed the intuitively plausible proposition that for such 
systems there exists only a solid and a gas-like phase.4 In the absence of cohesive 
forces there is no liquid phase, and a pair potential which allows for both 
cohesion and repulsion must be used in studies of the liquid state. In an 
important paper published in 1957 Wood and Parker2 described the results of a 
series of calculations by the Monte Carlo method of thermodynamic properties 
of argon along a supercritical isotherm. They used the 12-6 potential: 

4 (r) = 4 E  [((T/r)l2 - (o/r)6] (4) 

where r is the intermolecular separation, E is the depth of the potential well 
at the minimum in# (r) ,  and (T (the ‘collision diameter’) is the value of r for which 
4 (r) is zero. The values chosen for the interaction parameters E and a were 
those deduced by Michels, Wijker, and Wijkerl2 from measurements of the 
second virial coefficients at high temperatures, viz., E / k B  = 119.8 K and 
a = 3-405 A. This work represented the first successful application of computer 
simulation to the study of a real fluid. 

Extensive investigations of the thermodynamic properties of the 12-6 
fluid have recently been carried out both by molecular dynamics13 and by the 
Monte Carlo r n e t h ~ d . ~ * - ~ ~  There is good agreement between the two sets of 

l3 A. Michels, H. Wijker, and H. Wijker, Physica, 1949, 15, 627. 
l8 L. Verlet, Phys. Rev., 1967, 159, 98. 

lti I. R. McDonald and K. Singer, Discuss. Faraday SOC., 1967, 43, 40. 
l6 I. R. McDonald and K. Singer, J.  Chem. Phys., 1967, 47, 4766. 
l7 I. R. McDonald and K. Singer, J. Chem. Phys., 1969,50, 2308. 

L. Verlet and D. Levesque, Physica, 1967, 36, 254. 
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results. Attention has been mostly centred on the calculation of pressure and 
internal energy as a function of density and temperature. Data on other 
thermodynamic properties, including specific heat, compressibility, and thermal 
pressure coefficient, have also been reported. The values of these latter quantities 
are determined by the magnitude of fluctuations in the potential energy and 
virial and it is sometimes difficult to attain a high accuracy. No serious problems 
are encountered in the calculation of pressure and internal energy in the liquid 
range except in the neighbourhood of a phase change. If the computer model 
contains several hundred or inore particles there is a tendency for the system 
to separate into two phases in the region of the liquid-vapour transition. This 
leads to large fluctuations in the calculated properties. The isotherms display 
van der Waals loops and negative pressures are therefore obtained at sufficiently 
low temperatures and densities. In the melting region the isotherms generally 
have two distinct branches. One of these branches corresponds to the fluid 
state and the other corresponds to the solid. Near the critical point there is the 
additional complication that the small size of the model and the imposition of 
a periodic boundary condition suppress the large fluctuations in density which 
characterise the critical region in macroscopic systems. One effect of this is to 
increase the critical temperature of the 12-6 fluid in the computer model 
by ca. 7%18 and another is that the specific heat is underestimated.la 

The results obtained for the 12-6 potential with the parameters of Michels 
et a1.12 are found to agree closely with experimental properties of argonl9 
throughout the range between the triple point (83.8K) and the critical 
temperature (150.7 K) and also at higher temperatures. Figure 1, for example, 
shows the excellent agreement between the experimental equation of state and 
the molecular dynamics calculations of Verlet ,13 There are small systematic 
discrepancies between the experimental and calculated internal energies but 
these are removed if the depth of the potential well is reduced by only 2X.l' 
The same computer results could be used to assess the adequacy of the 12-6 
model for other simple liquids (e.g., Kr, Xe, N2, 02, CO, CHo) by application 
of the law of corresponding states and it is rather surprising that calculations 
of this type have not so far been reported. 

Levesque and Vieillard-Baron20 have carried out a series of calculations for 
other potentials and conclude that the 12-6 function provides the best 
correlation between computed and measured properties of argon. The success 
of this potential requires some explanation because it is known that the 12-6 
function fails to account satisfactorily for the experimental low-temperature 
second virial coefficients of argon.21 Furthermore, the coefficient of the r-6 
la D. Levesque and L. Verlet, Phys. Rev., 1969, 182, 307. 

(a) Clark, Din, Robb, Michels, Wassenaar, and Zwietering, Physica, 1951, 17, 876; (b) F. 
Din, 'Thermodynamic Functions of Gases', vol. 2, Butterworths, London, 1956; (c) J. M. H. 
Levelt, Physica, 1960, 26, 361; (d)  A. Van Itterbeek, 0. Verbeke, and K. Staes, Physica, 
1963, 29, 742; (e) W. van Witzenburg and J. C. Stryland, Canad. J .  Phys., 1968, 46, 811; 
(f) R. K. Crawford and W. B. Daniels, Phys. Rev. Letters, 1968, 21, 367; (g) W. B. Streett 
and L. A. K. Staveley, J. Chem. Phys., 1969, 50,2302. 
eo D. Levesque and J. Vieillard-Baron, Physica, 1969, 44, 345. 
21 Jones, Rowlinson, Saville, and Weir, Trans. Faraduy SOC., 1967, 63, 1320. 
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Figure 1 Compressibility factor of argon as a function of inverse temperature for several isochores. 
The curves are the results of molecular dynamics calculations (ref. 13) based on the 12-6 
potential with the parameters of Michels et al. (ref. 12). The curves are labelled with the density 
in g cm-3. The dots are experimental data (refs. 19c, d, e) 

term (representing the London dispersion energy) in the empirical potential 
of Michels et aZ.lZ is larger than that predicted by quantum mechanical 
calculations by a factor of about two.2zs z3 Careful analysis of the experimental 
data shows clearlyzz that the true pair potential between argon atoms has a well 
which is narrower and deeper than that of the 12-6 potential and has a 
maximum depth of ca. 150 k~ K.  The simplest proposed representation of the 
true pair interaction in argon is the Kihara core potential. This resembles the 

22 J. A. Barker and A. Pompe, Austral. J. Chem., 1968, 21, 1683. 
23 J .  S.  Rowlinson, Quart. Rev., 1954, 8, 168. 
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12-6 potential except that the intermolecular separation is taken to be the 
distance between the surfaces of atomic hard cores. A third parameter is 
therefore introduced to describe the size of the atomic core. A number of more 
complicated, multi-parameter potentials have also been put forward.22 Monte 
Carlo calculations based on the Kihara potential are found to lead to pressures 
and internal energies which are much lower than the experimental values for 
liquid arg0n.l'~ 24 It seems plausible to ascribe these differences to the neglect 
of non-additive, i.e., many-body interactions. On the other hand the 12-6 
potential may be used to calculate the properties of argon accurately over a 
range of temperature and density which includes the solid, liquid, and gaseous 
states. This suggests that the form of the many body interactions is such as 
to lead to an effective pair potential which is almost state-independent and 
approximately of the 12-6 type. It is possible, however, that the calculation 
of equilibrium thermodynamic properties does not provide a very sensitive test 
of a proposed potential function and that a number of different functions will 
give satisfactory results if suitable values are chosen for the parameters. 

For simple liquids at normal densities it is thought that the induced 
dipole-dipole-dipole interaction studied by Axilrod and Tellerz5 is the 
dominant and probably the only important many-body effect. This interaction 
has a similar physical origin to the London dispersion force between a pair of 
molecules. Table 2 shows the results of Monte Carlo  calculation^^^ for liquid 

Table 2 Contribution of triple-dipole forces to thermodynamic properties of 
argon24 

T(K) ~ ( g c m - ~ )  a b c d e a b c d e  
UIRT P VIRT 

87.9 1.390 -7.96 -8.53 +0.44 -8.09 -7.96 0.00 -1.99 +1.33 -0.66 -0.04 
105.5 1.271 -5.94 -6.32 $0.28 -6.04 -5.92 0.02 -1.31 $0.83 -0.48 0.00 
123.1 1.134 -4.45 -4.69 +0*18 -4.51 -4.48 0.05 -0.85 +0.54 -0.31 0.02 
140.6 0.934 -3.16 -3.31 $0.10 -3.21 -3.14 0.11 -0.49 +0*30 -0.19 0.08 

a, experimental valueslD; b, based on Kihara potential of ref. 26; c, contribution of triple- 
dipole forces; d, sum of columns b and c; e, based on 12-6 potential of ref. 17. 

argon based on the Kihara potential with parameters derived from measured 
viscosities and second virial coefficients of the dilute gas.26 Also shown are the 
contributions of triple-dipole forces estimatedz4 from an analysis of small 
numbers (ca. 50 for each state) of Monte Carlo configurations. The sums of 
pair and three-body contributions are in very much better agreement with the 
experimental results than the values obtained from the Kihara potential alone 
but poorer than that obtained when the 12-6 function is used. The remaining 
discrepancies may result either from the neglect of other many-body forces 
or from inaccuracies in the assumed form of the true pair potential. At very 

24 I. R. McDonald and L. V. Woodcock, J .  Phys. (C), in the press. 
26 B. M. Axilrod and E. Teller, J .  Chern. Phys., 1943, 11, 299. 
28 J. A. Barker, W. Fock, and F. Smith, Phjw. Fluids, 1964, 7, 897. 
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high densities non-additivity of the repulsive part of the pair potential is likely 
to be important. Theoretical work suggestsz3 that the pair repulsion is more 
accurately described by an exponential function than by the r-12 term which 
appears in the 12-6 potential. An exp-6 potential, which has an exponential 
repulsion term and an inverse sixth power attraction term, has been used by 
Ross and Alder2’ to obtain results for argon by the Monte Carlo method for 
comparison with shock compression data. They conclude that for liquid argon, 
compressed two-fold non-additive effects act in such a way as to increase the 
repulsive part of the effective potential between pairs of molecules by ca. 30%. 
The results obtained from various studies of many-body interactions are by no 
means conclusive and much work remains to be carried out. Computer simulation 
may be expected to play an important r61e in such calculations. 

B. Liquid Mixtures.--There exists only a limited number of liquid mixtures in 
which the molecules may be expected to interact according to the 12-6 
potential. These are mixtures of the rare gases and of substances obeying the 
law of corresponding states. Even in such cases there is considerable uncertainty 
about the values to be used for the parameters which characterise the interaction 
between unlike molecules. These factors, together with a lack of reliable 
experimental data on some of the simple mixtures which do exist, have hampered 
the development of quantitatively satisfactory theories of mixtures. In the case 
of a mixture of two 12-6 liquids, A and B say, with interaction parameters 
EAA, OAA and EBB, (TBB it is usual to assume that the potential between A-B 
pairs is described by a 12-6 function with parameters defined by the 
Lorentz-Berthelot rules : 

EAB = (EAAEBB)~  ; (TAB = 9 (UAA + (TBB) (5 )  

The Monte Carlo method may be used to calculate thermodynamic properties 
of mixtures of 12-6 liquids over an arbitrary range of potential energy 
parameters. Apart from providing basic information on the properties of such 
mixtures the results may be used as quasi-experimental data in testing theories 
of mixtures. Alternatively the comparison of the computer results with measured 
values of the properties of mixtures should prove to be a reliable method for 
the determination of EAB and (TAB in real systems. 

The changes of pressure and internal energy on mixing at constant volume 
may be determined from Monte Carlo calculations for the pure components 
and for the mixture. The method of molecular dynamics is less useful here 
because the temperature at which a molecular dynamics ‘experiment’ is 
performed can not be accurately predicted in advance. As the mixtures under 
consideration are very nearly ideal it is in any case difficult to obtain accurate 
values of the excess properties. It therefore seems advisable to avoid the additional 
error which is introduced by uncertainties in the value of the temperature at 
which mixing takes place. If sufficient Monte Carlo data are obtained the 

M. Ross and B. Alder, J.  Chem. Phys., 1967, 46, 4203. 
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changes in volume and enthalpy at constant pressure may be determined by 
extrapolation. In order to calculate the change in free energy the initial and 
final states of the system are linked by a reversible path along which the potential 
parameters vary continuously, together with an ideal mixing process at an 
appropriate point in the path. 

The excess Gibbs free energy GE, enthalpy HE, and volume VE have been 
calculated2* in this way for a series of liquid mixtures in which EAA/EBB and 
OAA/OBB are varied systematically. A selection of the results which have been 
obtained are shown in Table 3. The cross-interaction parameters are calculated 
from the Lorentz-Berthelot rules and have the same values in all cases, viz., 
E A B / ~ B  = 133.5 K and OAB = 3.596 A. These are values appropriate to the 
cross-interaction between molecules of argon and methane. It is possible to 
make a number of generalisations on the basis of these calculations. Perhaps 
the most interesting result is that the excess properties of mixtures of molecules 
which differ only in size (i.e., EAA/EBB = 1) are very small. This is in agreement 
with the conclusion reached on different grounds by Leland, Rowlinson, and 
Sather.2v The excess energy is positive when the ratios EAA/EBB and OAA/(JBB 

vary in opposite senses. When they vary in the same sense the excess free energy 
goes through a negative minimum when plotted as a function of EAA/EBB. The 
depth of this minimum becomes greater as the ratio CTAA/(TBB increases. The 
excess volume is negative in all cases. 

Table 3 also shows results of calculations based on the ‘one-fluid’ (If) and 
‘two-fluid‘ (2f) versions of the Average Potential Model (APM) developed by 
Prigogine and his ~011aborator~~~~ 31 and the recently proposed van der Waals 
approximation ( V ~ W ) ~ ~ ,  32 In the ‘one-fluid’ versions of both theories the 
properties of the mixture are assumed to be those of an imaginary pure liquid 
characterised by the average potential parameters Z, a”. In the ‘two fluid’ versions 
the properties of the mixture are those of an ideal mixture of two imaginary 
pure components, the molecules of which experience average potentials described 
by the parameters Gl and z2, G2. The two theories differ in the recipe for the 
determination of the average potential parameters. In the APM theory the 
averaging is based on the assumption of random mixing whereas in the van der 
Waals approximation it is carried out in the spirit of the original proposal 
for the calculation of the van der Waals constants for fluid mixtures. For 
mixtures of molecules of equal size the two theories are identical and agree 
well with the Monte Carlo calculations. In other cases the computer results 
strongly favour the van der Waals theory and, perhaps surprisingly, the ‘one 
fluid’ version is somewhat superior to the ‘two fluid’ model. 

The extrapolation to constant pressure of Monte Carlo data obtained at 

28 K. Singer, Chem. Phys. Letters, 1969, 3, 164. The data in Table 3 differ from the original 
as it contains errors which will be corrected. 
29 T. W. Leland, J. S. Rowlinson, and G. A. Sather, Trans. Faraday SOC., 1968, 64, 1447. 
30 1. Prigogine, ‘The Molecular Theory of Solutions’, North-Holland Publishing Co., 
Amsterdam, 1957. 
31 A. Bellemans, V. Mathot, and M. Simon, Adv. Chem. Phys., 1967, 11, 117. 
32 Leland, Rowlinson, Sather, and Watson, Trans. Faraday SOC., 1969, 65, 2034. 
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constant volume may be a source of error if the changes in volume are large. 
One way of avoiding this difficulty, though it requires more machine time, lies 
in the use of Monte Carlo calculations in the NPT-ensemble. The pressure of 
mixing is then a fixed parameter. Excess functions for 12-6 mixtures 
corresponding to some real systems (A + Kr, A + N2, A 3. CH4, CO + CH,) 
have been computed by this method.l0* l1 The results again strongly favour 
the van der Waals approximation. Agreement with experimental values, on 
the whole, is poor. This is almost certainly due to departures from the Lorentz- 
Berthelot rules in real systems. Recent has shown that even in the 
simplest mixtures the value of EAB is ca. 1 % less than that given by the geometric 
mean of EAA and EBB. Such a change would be sufficient to bring the calculated 
excess properties into agreement with measured values. 

C. Phase Equilibria.-Phase equilibria in one-component systems are 
determined by the equality of the Gibbs free energy per mole of the two phases 
at a given temperature and pressure. In order to compare the free energies of 
two fluid phases by means of the usual basic data obtained in a computer 
experiment, i.e., U (V, T) and P (V, T) ,  it is necessary to link the two states by 
a reversible path along which the change of A (Helmholtz free energy), and hence 
of G (Gibbs free energy), can be evaluated by numerical integration. In this 
way one could, for example, determine the change of G along the stable 
isochores and isotherms: 

V Z ,  T - t  F’z, T’+  V g ,  T ’ - t  r/, , T 

where T’ is a supercritical temperature and the suffixes I and g denote, 
respectively, liquid and gas. For the computer model there is the additional 
possibility of integrating along the unstable isotherm VZ , T - V, , T on which 
the P (V, T )  data exhibit van der Waals loops. This is the method adopted in 
the Monte Carlo calculations of Hansen and Verlet.33 (Molecular dynamics is 
less convenient to use here because changes along an isotherm are required.) 
Very large pressure fluctuations and slow convergence of the average values 
were encountered in the unstable part of the isotherm. This difficulty, which 
arises because of the tendency of the system to separate into two phases, was 
overcome by the deliberate suppression of large inhomogeneities within the 
model. Subsequent calculations revealed that this somewhat arbitrary removal 
of accessible configurations, while greatly improving the statistical convergence, 
had no effect on the calculated pressures. When the change of G along the 
isotherm is known, the liquid-vapour coexistence line can be determined because 
it is then possible to relate the free energy of either phase to that of the dilute 
gas. 

The method described above cannot be used to investigate the solid-vapour 
and solid-liquid transitions because the lattice arrangement disappears 
irreversibly on expansion. Hansen and VerIets3 therefore used an approach 

33 J. P. Hansen and L. Verlet, Phys. Rev., in the press. 
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due to Hoover and in which the computer model is expanded in such a 
way that the particles are constrained to remain within the expanded lattice 
cells. The pressure is calculated at different volumes and when a density 
corresponding to the dilute gas is reached the walls of the lattice cells are 
removed. The only effect of this last step is the appearance of the communal 
entropy, equal to NkB. The changes of A up to and beyond this point are 
evaluated by the integration of P (Y) d V. By combining these data with the free 
energies of the fluid phases which were calculated in treating the liquid-vapour 
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Figure 2 Solid-liquid-vapour phase diagram for argon. The full  curves are the results of Monte 
Carlo calculations (ref. 33) based on the 12-6 potential of Michels et al. (ref. 12). The dashed 
curve is the experimental liquid-vapour coexistence line (ref 19a). The open circles and dots 
are experimental melting data (refs. 19e, f) 

34 W. G. Hoover and F. H. Ree, J .  Chem. Phys., 1967,47,4873. 
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transition it is possible to determine the melting curve. Hoover and have 
themselves used the cell expansion method to establish the existence of a 
first-order solid-fluid transition for hard sphere molecules. The solid-liquid- 
vapour phase diagram for the 12-6 potential of Michels et aZ.12 is shown in 
Figure 2. Agreement with experimental data for argon is good except in the 
critical region where, as has already been remarked, the effect of the suppression 
of large-scale density fluctuations in the computer model is to raise the critical 
temperature. This work is important, not only because it supplies additional 
proof of the surprising excellence of the 12-6 potential for argon, but because 
it also shows that the quantitative study of phase equilibria by computer 
simulation is possible. 

4 Radial Distribution Function and Liquid Structure 
The structure of a simple liquid is usually described in terms of the radial 
distribution function. Let n ( r )  be the number of particles situated at a distance 
between r and (r + dr) from a reference particle. The radial distribution function 
g ( r )  is defined as 

If the intermolecular potential is spherically symmetric and pair-wise additive, 
then the internal energy, pressure and other thermodynamic properties which 
can be derived from these may be calculated if g ( r )  is known as a function of 
density and temperature. The calculation of the radial distribution function is 
therefore a fundamental problem in the statistical thermodynamics of simple 
liquids. Several theories have been proposed in which g ( r )  is obtained from the 
intermolecular potential function by solving an integral equation.3s The most 
successful of these, at least at high temperatures, is that of Percus and Yevi~k.~' 

The structure factor S (k) for the liquid is defined in terms of g ( r )  through a 
Fourier transform : 

S(k) = 1 + i ( k )  = 1 + (N/v)le-" k ( r )  - l l d r  (7) 

V 

The importance of S (k) arises from the fact that (for k # 0) it is proportional 
to the differential cross-section for scattering of electromagnetic radiation.ss 
The quantity k is the difference in wave vector between the incident and scattered 
radiation, though in liquids the structure factor is a function only of the 
magnitude of k. Neutron and X-ray scattering experiments are therefore valuable 
sources of information on the radial distribution function in liquids. Alterna- 
tively, the usual form of the Percus-Yevick or some other integral equation may 

35 W. G. Hoover and F. H. Ree, J.  Chem. Phys., 1968,49, 3609. 
36 G.  S. Rushbrooke, 'Physics of Simple Liquids', ed. H. N. V. Temperley, J. S. Rowlinson, 
and G. S. Rushbrooke, North-Holland Publishing Co., Amsterdam, 1968. 
37 J. K. Percus and G. J. Yevick, Phys. Rev., 1958, 110, 1 .  

P. A. Egelstaff, 'An Introduction to the Liquid State', Academic Press, London, 1967. 
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be inverted to allow the derivation of the pair potential in a liquid from measured 
scattering intensities. Work of this type has been reported both for argon3# 
and for liquid In the latter case the calculation leads to an effective 
ion-ion interaction potential. Some of the difficulties associated with this 
potential inversion problem are discussed below. 

The radial distribution function for liquid argon shown in Figure 3 is taken 
from the early work of Wood, Parker, and Jacobson3 in which the 12-6 
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Figure 3 Radial distribution function for liquid argon at T = 126.7 K, p = 1.099 g cm-s. 
The curve shows the results of a Monte Curlo calculation (ref. 3) bused on the 12-6 potential 
of Michels et al. (ref. 12). The dots are results from X-ray scattering experiments (ref. 41) 

39 P. G. Mikolaj and C. J. Pings, J. Chem. Phys., 1967, 46, 1412. 
40 (a) M. D. Johnson, P. Hutchinson, and N. H. March, Proc. Roy. Soc., 1964, A, 282,283; 
(b) P. Ascarelli, Phys. Rev., 1966, 143, 36. 
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potential of Michels et ~ 1 1 . ~ ~  was used. The main peak in g ( r )  represents a shell 
of nearest neighbours and a peak corresponding to a second shell may also be 
seen. Agreement with the experimental curve derived from X-ray scattering 
data by Eisenstein and Gingrich41 is qualitatively good but quantitatively is 
rather poor. The radial distribution function and structure factor of the 12-6 
fluid have since been calculated by Verlet by means of the method of molecular 
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Figure 4 Structure factor of liquid argon at T = 99.1 K, p = 1.260 g ~ r n - ~ ,  obtained from a 
molecular dynamics calculation (ref. 42) based on the 12-6 potential with the parameters 
of Michels et al. (ref. 12). The dots are the results of neutron scattering experiments (ref. 43) 
on liquid krypton in a nearly-corresponding state 

41 A. Eisenstein and N. S. Gingrich, Phys. Rev., 1942, 62, 261. 
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dynamics.42 These calculations cover a wide range of density and temperature. 
At high densities the structure factor has the characteristic shape shown in 
Figure 4. The curve is dominated by a large peak at ko = 27r/ro, where ro is 
approximately equal to the value of 0 in the 12-6 potential. From the properties 
of the Fourier transform it follows that the peak in S (k) is responsible for the 
oscillations in g(r)  and that the position of this peak determines the period 
ro = 27r/k0 of the oscillations. The value of To,  which has the character of a 
hard core, decreases slowly with increasing density but is almost independent 
of temperature. Ve1-1et~~ shows that the main features of the structure factor 
of the 12-6 fluid are accurately reproduced by a hard sphere model in which 
the only adjustable parameter is the diameter of the hard spheres. These results 
emphasise the importance of the repulsive part of the potential in determining 
the form of the radial distribution function and show that the structure of a 
simple liquid is determined primarily by geometric effects arising from the 
presence of a hard core. 

The adequacy of the Percus-Yevick approximation may be tested by comparing 
the theoretical radial distribution function with those obtained in computer 
‘experiments’. A more illuminating test of the theory is provided by solving the 
potential inversion problem in order to recover the 12-6 potential from the 
structure factors computed by Verlet. It is found that at densities near the 
critical point the potential calculated from the Percus-Yevick equation has a 
bowl which is ca. 1 %  shallower than that of the 12-6 function used in the 
molecular dynamics ‘experiments’. The error increases rapidly as the density 
rises and it is concluded that the Percus-Yevick theory cannot be used to obtain 
quantitatively reliable information on the two-body interaction in dense systems. 

Figure 4 shows that there is good agreement between the structure factor 
calculated by computer simulation and the results of neutron scattering 
experiments on liquid krypton.43 It is found, in particular, that the neutron 
data lead to structure factors which display the regular oscillations at high 
k values which are a prominent feature of the computer results. The structure 
factors obtained from X-ray scattering experiments4* show a more erratic 
behaviour and agreement with the molecular dynamics calculations is not so 
good. Levesque and Verlet45 suggest that the available X-ray data contain some 
systematic errors. 

The radial distribution function is concerned only with pair correlations and 
therefore falls some way short of providing a complete description of the 
structure of the liquid. Multiple correlations can in principle be studied by com- 
puter simulation but this requires an extremely large amount of computing 
time. An alternative method of analysis in terms of Voronoi polyhedra has 
been developed by Bernal for the study of his random close-packed hard sphere 

42 L. Verlet, Phys. Rev., 1968, 165, 201. 
43 G. T. Clayton and L. Heaton, Phys. Rev., 1961, 121, 649. 
44P. G. Mikolaj and C. J. Pings, J. Chem. Phys., 1967, 46, 1401. 
45 D. Levesque and L. Verlet, Phys. Rev. Letters, 1968, 20, 905. 
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model of the liquid 47 It may equally well be applied to the analysis of 
computer generated configurations. The Voronoi polyhedron for a partide i 
is the smallest closed convex polyhedron surrounding i which is formed by the 
set of planes which bisect the vectors linking i to all other particles. A typical 
two-dimensional ‘Voronoi polygon’ is shown in Figure 5. The construction is 

& 

Figure 5 A typical two-dimensional ‘ Voronoi polygon’. The dots represent particles of the fluid 

unique and the set of Voronoi polyhedra fill the whole volume occupied by the 
particles. The structural features of a system may be described in terms of various 
distributions including the number of faces of the polyhedra, the number of 
sides of the polygons which form these faces and the volume of the polyhedra. 
In liquid-type systems it is found4** 4g that polyhedra with 14 or 15 faces and 
faces with five sides are dominant. This type of analysis is useful for the pictorial 
insight into the structure of the liquid which it provides, though it offers no 

40 J. D. Bernal, Proc. Roy. Soc., 1964, A,  280, 299. 
47 J. D. Bernal and J. Finney, Discuss. Faraday SOC., 1967, 43, 62. 
48 J. Finney, Thesis, University of London, 1968. 
‘CI A. Rahman, J.  Chem. Phys., 1966,45, 2585. 
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obvious route to the calculation of thermodynamic properties. It also proves 
useful, as later discussion will show, in describing the process of diffusion, 

5 Time-dependent Phenomena 
The method of molecular dynamics permits the study of microscopic time- 
dependent phenomena in liquids to a degree of detail which experimental 
techniques cannot yet approach. In the early work of Alder and Wainwright,6 
for example, much attention was devoted to the problem of the rate at which a 
system of interacting particles approaches equilibrium starting from some 
arbitrary non-equilibrium state. The initial condition used most often was one 
in which the particle velocities are of equal magnitude but have different 
directions. The results revealed a marked difference between the behaviour of 
hard spheres and particles interacting through potentials more representative 
of real systems. For hard spheres the equilibrium Maxwell velocity distribution 
develops extremely rapidly and is essentially complete after each particle has 
collided two to four times with its neighbours. This appears to be true at all 
densities. By contrast, for molecules interacting through a square well potential, 
a Maxwell distribution again appears after a short time but the mean velocity 
of this distribution then moves slowly to reach its final equilibrium value after 
ca. 60 collisions per particle. The reason for this difference in behaviour is that 
the attainment of equilibrium in systems with cohesive potentials requires the 
interchange of kinetic and potential energy. This is a relatively slow process. 
At equilibrium, the total energy being constant in a molecular dynamics 
calculation, the mean square fluctuations in kinetic and potential energy are 
equal. 

The motion of particles in a system at equilibrium may be described in a 
variety of ways. Consider a particle i which at time t = 0 is located at a position 
ri(0) and has a velocity vi (0). The mean square displacement at a time t is 
defined as 

and the velocity autocorrelation function Z ( t )  is defined as 

The form of the velocity autocorrelation function is determined by the rate at 
which the velocities of the particles change as a result of interactions with other 
particles. The angular brackets in equations (8) and (9) denote averages over 
an equilibrium ensemble of initial conditions. The two functions may also be 
defined in terms of a time average and in practice, in the molecular dynamics 
‘experiment’, the averages are calculated by considering a number of different 
time origins. 

Both the mean square displacenient and the velocity autocorrelation function 
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are related to the process of diffusion in the liquid. Thus the coefficient of 
self-diffusion D may be expressed in terms of Z ( t )  by the equation 

The function Z ( t )  is equal to one at t = 0 and decays to zero as t h e  advances 
and the memory of the initial conditions is lost. Figure 6 shows the velocity 
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Figure 6 Velocity autocorrelation function for liquid argon at T = 94.4 K, p = 1.374 g ~ r n - ~ ,  
obtained from a molecular dynamics calculation (re6 50) based on a 12-6 potential (see 
text). The dots show the Langevin type of velocity autocorrelation (m is the atomic mass) 
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autocorrelation for liquid argon calculated by Rahmanso from a 12-6 
potential ( E / ~ B  = 120K, (3 = 3.4 A) by the method of molecular dynamics. 
The autocorrelation decays to zero in ca. 2 x 10-12 sec but the most striking 
feature of the curve is that Z ( t )  becomes negative after 0.33 x 10-la sec and 
remains essentially negative as the decay goes to zero. The physical significance 
of a negative autocorrelation is that it represents ‘back scattering’ of particles.6 
At sufficiently high densities a particle is trapped for a time within a cage formed 
by its neighbours. The motion of the particle is therefore characterised by frequent 
reversals of velocity within a narrow range of angles. This results in a negative 
correlation or anti-correlation of velocity. In the extreme case of an harmonic 
oscillator Z ( t )  is a cosine curve. It is clear that simple oscillation does not 
contribute to self-diffusion and inspection of equation (10) confirms that the 
effect of negative regions in Z (t) is to reduce the value of D. 

The behaviour of ( r2 )  as a function of time for the system studied by Rahmanso 
is shown in Figure 7. The slope of the linear portion of the graph is proportional 
to the coefficient of self-diffusion. Thus D may be calculated by means of the 
equation 

Lt (r2> = 6Dt + C (1 1) 
t-+ 00 

where C is a constant. Figure 7 shows that this asymptotic behaviour is already 
reached at 10-l2 sec. The calculated value of D is 2.43 x cm2 sec-l, which 
is ca. 15 % lower than the experimental value for argon at the same temperature 
and density. Agreement with experiment is improved when an exp-6 potential 
is It may also be seen from Figure 7 that the root mean square displace- 
ment after 2.5 x 10-l2 sec [by which time Z ( t )  is effectively zero] is only 1.9 A. 
This is approximately one-half the nearest neighbour distance in the liquid. 
The persistence of short range order which is suggested by this result may be 
described more precisely by means of a time-dependent pair correlation function 
Gd (r, t ) .  Let n (r, t )  be the number of particles situated at time t at a distance 
between r and (r  +dr) from the position occupied by a reference particle at 
t = 0. Then Gd (r, t )  is defined as 

The subscript d (symbolising ‘distinct’) indicates that the reference particle is 
not included in the number n (r, t ) .  The function Ga (r, 0) is equivalent to the 
radial distribution function g(r). Rahmanso finds that the height of the first 
peak in Gd (r, t )  for liquid argon at 94-4 K at t = 0, 1, and 2.5 x 10-l2 sec is, 
respectively, 2-8, 1.5, and 1-1. Remnants of the first shell of neighbours therefore 
persist for at least 2.5 x 10-l2 sec. 

Fluctuations in short range order are closely related to the phenomenon of 
self-diffusion. Rahman49 shows that for liquid argon near the triple point the 
decay time T of the fluctuations in the shape of the Voronoi polyhedra is ca. 
0.5 x 10-12 sec. In this time interval the particle tends to ‘slip’ along the 

60 A. Rahman, Phys. Rev., 1964,136, A405. 
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1 .o 2.0 3.0 
TIME in sec 

Figure 7 Mean-square displacement of atoms in liquid argon (ref. 50). For details of the 
calculation see caption to Figure 6 

direction corresponding to the elongation in the polyhedron to which the 
fluctuations give rise. As these fluctuations result from the correlated motion 
of many particles it is clear that this description is one truly appropriate to the 
liquid state and does not rely on concepts borrowed from the study of gases 
or solids. The direction along which a particle moves in the decay time r may 
be used to resolve the total velocity autocorrelation into two parts corresponding 
to ‘slipping’ and ‘rattling’ motion of the particles. Thus 

where S , ( t )  (the ‘slipping’ part) is the autocorrelation of the component of 
velocity parallel to the direction of displacement in the time T and R, ( t )  (the 
‘rattling’ part) is the autocorrelation of the velocity component perpendicular 
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to this direction. The function S, ( t )  may be further resolved into two parts, 
S,+ ( t )  and S,- ( t ) ,  which represent the contributions of particles which at 
t = 0 are moving, respectively, with a positive velocity component along the 
direction of displacement in the time interval r and with a positive velocity 
component in the opposite direction. Both S , - ( t )  and R,( t )  represent an 
oscillatory type of motion. Figure 8 shows this resolution for a system 
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Figure 8 Components of the velocity autocorrelation function for liquid argon corresponding to 
'slipping' and 'rattling' motion of the atoms. The curves are obtained from a molecular dynamics 
calculation (ref. 49) at T = 85.5 K, p = 1.407 g ~ r n - ~ ,  based on an exp-6 potential 

representing argon at 85.5 K. The sum [R, ( t )  + S,- ( t ) ]  decays to zero in 
ca. sec after passing through a deep negative minimum. The motion 
described by these components of the total velocity autocorrelation contributes 
little to the process of self-diffusion and is analagous to the vibrations of atoms 
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in an anharmonic solid. The function S,+ ( t )  decays more slowly and becomes 
only weakly negative. The major contribution to D comes from this component 
of z (t). 

Other transport properties, including viscosity and thermal conductivity, may 
be expressed in terms of appropriate time-correlation functions. 51 These could 
be calculated in a molecular dynamics ‘experiment’. The tumbling motion of 
diatomic molecules may also be characterised by various correlation functions. 
Harp and Berne have recently calculated the angular momentum auto- 
correlation function for liquid carbon monoxide by molecular dynamics. 52 

The autocorrelation has an oscillatory behaviour but the detailed structure of 
the function is dependent on the strength of the non-central part of the pair po- 
tential used in the calculations. The angular momentum autocorrelation is im- 
portant in determining the shape of n.m.r. signals in liquids. Similarly, the 
i.r. and Raman spectra for diatomic molecules are related to the form of 
the autocorrelation functions which describe the rotation of the molecular 
axis.53 The importance of time-correlation functions in statistical mechanics 
makes it certain that more work of this type will be carried out. 

6 Final Remarks 
Computer simulation has also been used in studies of a number of other systems. 
Monte Carlo calculations of thermodynamic properties of liquid water, 54 based 
on a rather simple pair potential, and of liquid potassium based on 
potentials which are the sums of an exp-6 function and a Coulomb term, have 
been briefly reported. Systems of hard ellipsoidal  particle^,^^ which can serve 
to simulate the properties of liquid crystals, and the pair correlation function 
in liquid have also been studied. The equilibrium number of lattice 
defects in solid argon has been determined58 by a method which could be 
generalised to yield absolute chemical potentials in liquids and liquid mixtures. 

Work on increasingly complex systems including, for example, ionic solutions 
will no doubt be carried out in the near future; and it is probable that what has 
been achieved for the system of 12-6 molecules, i.e., a knowledge of the 
thermodynamic properties including the phase diagram, will also be achieved 
for systems in which less simple pair potentials are operative (e.g. ,  polar 
molecules). It is reasonable to hope that systematic work of this kind will lead 
to a thorough understanding of the relationship between the bulk properties 
of a system and the form of the intermolecular pair potentials. By contrast, 
the study of systems in which many-body forces cannot be treated as small 

51 R. Zwanzig, Ann. Rev. Phys. Chem., 1965, 16, 67. 
62G. D. Harp and B. J. Berne, J .  Chem. Phys., 1968, 49, 1249. 
53 R. G.  Gordon, Adv. Magnetic Resonance, 1968, 3, 1.  
54 J. A. Barker and R. 0. Watts, Chem. Phys. Letters, 1969, 3, 144. 
65 L. V. Woodcock and K. Singer, ‘Proceedings of the Culham Conference on Computational 
Physics’, UKAEA Culham Laboratory and IPPS, 1969, Vol. 2, July, paper 25. 
66 D. Levesque, D. Schiff, and J. Vieilland-Baron, J. Chem. Phys., 1969, 51, 3625. 
57 A. Paskin and A. Rahman, Phys. Rev. Letters, 1966, 16, 300. 
6eD.  R. Squire and W. G. Hoover, J .  Chem. Phys., 1969, 50, 701. 
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would make computational demands which, for some time to come, will be 
prohibitive. The same is true of time-dependent phenomena characterised by a 
relaxation time greater than, say, lo-* sec. 

No general method has as yet been devised for the computer simulation of 
non-classical systems. This is the most fundamental and, from the chemist’s 
point of view, the most frustrating limitation. If this problem were to be solved 
it would be possible to examine in great detail all kinds of elementary chemical 
processes. 
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